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ABSTRACT

Feature matching is used in many applications agabnvironmental monitoring, aerial imaging, and/sillance
etc. In this paper we discuss the methods for iegudimensionality of feature descriptors. The asted features are
required to be invariant to different transformatiof image like image rotation, scale change atgamihation.
The combination of different existing algorithm&di SIFT, PCA and Sparse representation for featietection and

descriptor development has been discussed.
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INTRODUCTION

The market requirements encourage the developnidrigl performance computer vision algorithms. A ¢
different feature detectors and descriptors haeeessfully been applied in many computer visiokdasiowever, these
methods require high computation time and memonrage. Dimension reduction [2] is the process inictvh
high-dimensional data [1] is transformed into a@mpnt representation of reduced dimensionalitatlie descriptors have
wide variety of applications in face recognitiomgige matching, image retrieval, object recognitiorage registration etc.
Most of these Feature descriptors usually requgh Himension to represent the objects of intel@stater the dimension
more will be the consumption of resources such amamny, space and computational time. Dimensionaétjuction is
important, as it permits visualization, classifioat and compression of high dimensional data. Teinge number of
dimensions generated by the descriptors can beegmeblem for certain types of tasks. To undersiahg we need this
reduction, we can think about a video tracking egagion, in a film which consists of 30 frames perond, the descriptors
here could detect hundreds of interest points schdeame. Even if we ignore some frames, the amofimformation

generated could be large, which would result inermmsumption of space for memory storage and ctatipnal time.

Many dimensionality reduction techniques [2] wargdduced in recent years. All these methods Haeeapacity
to deal with complex nonlinear data. The commomsigcutechniques for dimensionality reduction aradyal Components
Analysis (PCA) and Linear Discriminant Analysis (AD

Principal Components Analysis (PCA) [1] gives a{dimensional representation of the data that dessninost of
variance in the data as possible. It is done bgirfign a linear basis of reduced dimensionality foe tata, in which the
amount of variance in the data is maximal. LinemcBminant Analysis (LDA) maximizes the linear segbility between
data points belonging to different classes. It dimdlinear mapping M that maximizes the linear clsaparability in the
low-dimensional representation of the data. In fl@per we chose to implement PCA because of itglgiity as it doesn’t

require large computational time and also theredsiced complexity while using this technique viittages.
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PRINCIPAL COMPONENT ANALYSIS (PCA)

Principal Component Analysis (PCA) [1] is a stambachnique for dimensionality reduction [2] andhdts been
used in computer vision problems such as featleetsen, objects recognition and face recognitl8A is a best algorithm
used to represent key point patches|[3] after theytransformed into a canonical scale, orientatind position, and this
representation considerably increases SIFT's[4Ehiag performance. In general to reduce the dineensi large data sets,
PCA uses vector space[1]. Using such mathematicgéqtion, the original data set, which is usuabmposed of large

variables, can often be interpreted in just a fewables that is the principal components.

In PCA amount of principal components is less thia@qual to the amount of original variables. THamsformation
can be defined such that the main principal compbrtbat is the first principal component has thegdst
possible variance and hence accounts for maximuiabikty in the data and every component followiimgturn has the
highest variance but under the constraint thas ibrthogonal to the previous components. Princgmahponents are

orthogonal because they are the Eigen vectorseofdkariance matrix, which is symmetric.

Basics Terminologiesin PCA
Covariance

Covariance [1] is defined as a property which affigs the quantity of difference (variance) of timehsions from
its mean. It gives us a measure of distance peddron the pixel values of image and therefore plewithe intensity
measure of an image. Covariance can also be saatedmeasure of how intensely correlated the twiablas are. It is

represented as follows

COV(Xin) = M (1)

5i0j
Wheregj is the standard deviations, it gives us the siedisCorrelation of xi and x|

Covariance is found to be symmetric as given iretipeation below

cov(x,y) = cov(y,x) 2
It is accomplished on the extracted matrix. Itacalated using the following formulae.

Suppose there are ‘n’ sets of variants given dsvisl {x1............. xn} then the 1st order “covariance migt is
defined by

Vi = cov(xix]-) = ((xi - ui) (X]- - uj)) 3)
The term ‘Y is defined as the mean

The higher order matrices can be generally given as

Vimin = ((Xi - i) (Xj - H,-)) (4)
Characteristics Equation

Characteristic equation is obtained from the Cararé matrix. It is a “cubic root equation”. The t©which is said

to be maximum are calculated using the “Cardanshrigue. By this root we get the Eigen value whighprincipal
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component of the data and it exclusively recogn@esnage.
The “Eigen Values” and the “Eigen Vectors:

Eigenvectors also called as characteristic vedtar matrix which is a vector. This vector pointsardirection
which is said to be invariant for transformatiohattare considered to be linear. For exampledetamsider a term “v”
which is a vector and assume it to be non-zera, ittgives the Eigenvector of a square matrix “®luppose Xv is a multiple

scalar of the term “v”. let us now give this comalitin the form of equation as follows :
Ay =N 5)

In the above equation the termk’“is also considered as a scalar term, it is idiedti as the Eigen

value or characteristic value associated with tigefvector “v".

It does have a correspondence among (n x n) seuatreces and hence it is a linear transformatiomfitself to
“n” dimensional vector space. This is the purpos$s we describe “Eigenvalues” and “Eigenvectors’same, by either
using the language of linear transformation or a$: By using a symmetric matrix that is covar@ameatrix, we can
determine orthogonal basis by determining the “Rigalues” and its resultant “Eigen vectors”. Thgdfi vectors “ei” and
the Eigen valueX” gives us the solutions of the equation

cx€ = Aje;,wherei=1,2,...... N (6)

For ease let us predict that the Eigen valagsare discrete. These standards can be set upfollithwsing way that
is by finding the solutions of the characteristiiation

ICx — Al (7

“I” from above equation is known as the “identityatrix” which has a same order as Cx.

Also |.| denotes the determinant of matrix.

Here we face with a conflicting goal. That is weeddo solve the problem by declining the dimensibrthe
representation along with preserving the origimdbiimation to a maximum extent. Hence PCA givesappropriate

approach to manage the compromise between redti@rigformation and making the problem simple.
Methodology of “Principal Component Analysis”

This method is formed on the hypothesis that higitianice is present in higher data information. iRipeit data is
projected to a new co-ordinate space after thaetibn of its features. And hence we get axis in oeordinate that signifies
a principal constituent vector. The 1st principahponent is the path that gives the maximum vaeavitich means it is the
direction along which the positive variance is erie. The 2nd Principal Component is then givendirection which is

orthogonal to the 1st and for which the varianoexiseme and so on.

Let us consider a data denoted in terms of a mattiof order (mxn). The “n” columns are considerexbe the
samples or observations. The “m” rows are knowwkaagbles. Now we have to transform the matrix ‘Iiearly onto a

matrix “Y” whose dimension is also (mxn), so that & (m x m) matrix “P” we can write
Y =PX (9)
The above equation (9) symbolizes “change of basis”
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Suppose if we consider “P” rows to be vectors (j21,. . . , pm) and the columns of “X” to be thducon vectors
(x1, x2, . . ., xn) then it can be given in thenficof equation as follows
PiX1  PiXz ... P1Xp

P2X1  P2Xz .. P2Xp

P, = (Py, Py, oo o P, )= =Y (10)

PmX1 PmX2 <+ PmZXn

It expresses the original data “X” which is proggtbnto a column of “P”. As a consequence we aedbe rows of
“P"{pl, p2............ pm} that gives us a fresh basis @monstrating the columns of “X”. The rows of “Will then be the

principal component directions.
Properties of PCA
» It has Feature components which are said to barline
* Its main property is Dimensionality reduction.
* It has Gaussian distributed feature components.
» The feature components exhibit orthogonality.

* Itis based on linear transformation
Steps to Implement PCA
The following are the steps to perform Principah@mnent analysis on a set of data
Get Data

Consider a data set with an observations of “pfaldes, our goal lies in lessening the data in sualay that each

and every observation could be described as onlywatiables, where (A < p).

The arrangement of data is done as a set of “ntovetata (x1............ xn), where “xi” symbolizes distinct

gathered observation of “p” data variables and (x1....... xn) are the row vector data, that has “p” cofis.
Now place the row vectors into a single matrix Xoader (n x p).
Mean Computation

Now we compute the mean for every dimension j=1p..and then dwell the computed mean into an mean

vector “u” of order (p x 1).
ulj] = - P X[, j] (11)
Subtract the Mean with the Original Data

Subtract the mean from every data which gives eisitterage across each dimension. It is done tapecaldata set
whose mean is zero and gives us deviation fronmtban. We do this for the purpose of centering #ta.dThe observed

mean “u” is then subtracted from every row of thetadmatrix “X” and thus we store the subtracted meata in

the (n x p) matrix

B=X-h,T (12)
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The term “h” is a column vector of order (nx1).
Determine the Covariance Matrix
The (pxp) Covariance matrix “C” is now computednfrthe external product of matrix “B” with itself géven in

the equation below

C = min B*-B (13)

The operator “*” is the transpose conjugate operato
Determining the “Eigen values” and “Eigen vectoo$'the covariance matrix:

As we know that a Covariance matrix is also knowraaymmetric matrix. The Eigen values and itsorscare
computed for this matrix. This is a significantstas they give us the worthwhile information abmwtdata. Moreover, they

offer with information about the data patterns.
Hence by this practice of taking the Eigen vectases extract the lines describing the data.
We then calculate matrix “V” of Eigen vectors tlléigonalizes the covariance matrix C
vV-lcv =D (14)

The term “D” is the diagonal matrix of C which géveis the Eigen values. Here we make the use ofl@aimbu
algorithm for manipulating the “Eigenvectors” anHBigenvalues”. The matrix “D” takes the order ofXp) diagonal

matrix.
D [k, I] = Xk, for all values of k=1 which is the jth Eigenwalof the covariance matrix
D [k,I] = O for all values of k~ |

Eigenvalues and Eigenvectors are then well-arraagedpaired. That is jth Eigenvalue correspondémdke jth
Eigenvector. We have to now arrange the columileoEigen vector “V” and Eigen value “D” in declig order of Eigen

value. At this point wOe must be definite to keepuaate combinations between the columns in eadfixna

We then estimate the energy for all the Eigenveasdiollows
glil = ¥_,DIkK],forj=1,....... P (15)

Selecting Components and Making a Feature Vector

Idea of reduced dimensionality and compressionatd domes into picture in this step. That is thgeRivector
comprising of top Eigen value gives Principal cdnent of data. The significant relationship isaddished among the data
dimensions. After the determination of Eigen vesttine succeeding action is sequencing the Eigler ¥eom a range of

high to low. We now get the constituents in seqeesfaheir significance.

The reason to do this is to disregard the constituef lesser significance. While doing this we micertain
information, but as the Eigen values are slight,dega’t miss considerable information. The resulidaia will now have

lesser dimensions than the input data.

Now choose a subclass of eigenvectors to be the bestors and then save 1st “A” columns of “V"aamatrix W
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with an order of (p xA).

Wik 1] =V[kI1],fork=1,........ P (16)
I=1,....... A
Where K A<p

Here we introduce a term “g” denoted as a thresholsklecting a proper value assessment to “A”. Ave at
selecting “A” in such a way that it is small alowgh attaining a sensibly greater value of “g” tie basis of percentage. To
clarify this with an example, suppose if we seléd¢tsuch that the energy of “g” is exceeding cemt#ireshold like 95%.
Then we get the smallest value of A

glA]
= >
olp] = 0.95 a7

Fercentage of reduction

085 0.7 0.75 0.8 0.85 0.2 0.25 1
Threshaid

Figure 1: Graph Showing the Threshold Selection anés Corresponding Reduction
Changing the Input Data to Score “Z” and Calculatethe (n x p) “Z” Matrix
Z =2 (18)
Projecting the Z Scores of Data onto the New Basis
This is done by using the equation below. Thisgxtgd vector gives us the columns of the matrix
T=7-W (19)
Advantages of Using PCA

PCA'’s important advantages are low noise sensitivéduced requirements for memory and capacitybattbr

efficiency. The advantages of PCA are discusseabel
e As it has got a orthogonal components there is ¢dekdundancy of the data
» There is reduced complexity while implementing wittages.

» Due to areduced database representation, we eaty/to store the trainee images in the form optbgctions on

a basis of reduction.
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e It has got reduced noise because the maximum iaaribasis is selected and so the minor variatioesgmored
automatically in the background.
SIFT (Scale Invariant Feature Transform)
Important steps in SIFT are as follows:

» Scale space peak selection: This is first stagerevhossible points are recognized by scanningrbge in

terms of location and scale.

» Localization of key points: In the second stagey keints are then localized to sub-pixel accuraoy a

discarded in case they are unstable.
» Orientation assignment: This stage detects ori@migfor every key points created on the patch.

» Key point descriptor: This section of the Sift faarepresentation for every key point built onixals patch to

compare local neighborhood.
PCA Based SIFT Descriptor

This algorithm for local descriptors [3] (termed RSIFT) receives the same input as the standardl 8#scriptor,
the sub-pixel location, scale, and dominant origonia of the key point. And then extract a 41x4fcpat the given scale,

centered over the key point, and rotated to aligddminant orientation to a canonical direction.
Properties of a Patch
Each of the patches [3] should satisfy the follgyyamoperties It should be centered on a local marirm
PCA-SIFT descriptor:
PCA-SIFT descriptor [3] is implemented as giverohel
» Select a representative set of pictures: Detedtesllin these pictures.

» Extraction of image patch: For each key point ecttean image patch around it with size 41*41 imagtelp around

the feature point, and then rotate the image patehdirection using a transformation matrix.

« Computation of image gradient: Except every pixetlte edge around the patch. Calculate the gradfezeich

pixel in both horizontal and vertical directiondiéfefore 39*39*2=3042 dimension vector is obtained.

» Projection of descriptor: Firstly we have to caitalthe projection matrix, if there are “s” key-pisi detected, then
the projection matrix has P= s*3042 vectors. Thead@ance matrix R is obtained of matrix P. The Bigalues [1]

W Y As0s2and Eigen vectorg @,,............ ,63042 Of the matrix A are calculated.

The Eigen values are then sorted in descending ardkthe first 20 values are selected. Their spwading Eigen
vectors are chosen to be the principal componergstibn, thus we have 20*3042 projection matrikug the 3042 element
vector (d,db,....cvvvunnnnn. Os040) is projected onto the feature space by projectimtrix P and thus reduced to a 20
dimensional PCA-SIFT descriptor[3].
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Descriptor Matching

The best match [5] for each key-point is determibgientifying its nearest neighbor in the databaiskey-point.
The nearest neighbor is defined as the key-poitit minimum Euclidean distance for the invariantaigdgor vector. Most
of the features from an image will have not haveexd match in the database because they origm lfrackground clutter or
are not detected in the training images. Henceitldvbe useful to eliminate features that do netheny good match to the
database. A threshold is set on distance to theestdeature and it does not perform well, as fescdptors are more
discriminative than others. A better measure cartheecomparing of distance of the closest neighbothat of the
second-closest neighbor. If there are multiplentraj images of the same object, then we definsd¢isend-closest neighbor

as being the closest neighbor.

The figure 2 below describes the graph for perggntd matching of two images at different anglesbfoth SIFT
and PCA-SIFT and figure 3 shows the matching opmratith respect to scaling.

Percentage of matching

Angle indegrees

Figure 2: SIFT vs. PCA-SIFT on a Matching Task whee the Images are Rotated to Different Angles
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Figure 3: SIFT vs PCA-SIFT on a Matching Task wherdmages are Scaled

SPARSE APPROXIMATION

The "Sparse Approximation"[6] describes the low-eitsional data structure. The model uses a dictjonar
The model assumption is that every data vector ftmrsource could, in principle, be described tse@mr combination of
few atoms from the dictionary. Sparse vectors meglgiss space when being stored on a computeryashenposition and

value of the entries need to be recorded.

In image feature extraction [8], the feature pooftan image are to be detected, followed by demctvery feature
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point using a descriptor. Then, sparse representédr all the descriptors of an image has beepagsed. The advantage is
that a feature descriptor is sparsely represemteérms of a dictionary, in order to obtain simplat efficient feature
representation. The fundamental unit achieved lbgnging a set training data can be termed as aldm. sparse

representation of the data is linear combinatiotheffew atoms as that of the dictionary.
Sparse Representations in Mathematical Terms

Lety be a vector of dimension N and D a matridiofiension N x M with M << N. The columns dk of Drclae seen
as basis functions or atoms of a dictionary thdltlvel used to represent the vector y. Note thaetiean infinite number of
ways to choose the M dimensional vector X suchyhaDx. The aim of sparse representations is &anckeamong all these
solutions of y = Dx, that are sparse, Indeed oriie gnerally does not seek an exact reconstrubtibrather seeks a sparse

representation that satisfies:

lly — Dx|3< e (20)

Where ‘e’ characterizes an admissible reconstroaioor
Greedy Algorithms for Approximation of Sparse Vecta

These algorithms attempt to build the support aing non-zero element at a time. The most basagofithm is
the Matching Pursuit (MP)[7]. This is an iteratiakgorithm that starts by finding the one atom thedt describes the input

signal, i.e., finding the index
1= argmini minc ||y - c-d§ (21)

Once found, compute the signal residual as y —witthi the optimally found constant ¢ and the atamTtien, at
each iteration, one atom that best describes gidua is added to the support, with the appropratefficient contributing
to reducing the residual the most. This processgeated until the norm of the threshold dropswele given threshold.
There are several variants of Matching pursuitstigms such as: Orthogonal matching pursuit(OMR3g&-wise matching
pursuit(StOMP), Regularized matching pursuit(ROM#)d so on. Every time the atom is added OMP alguorit
re-computes set of coefficients. StOMP is simita®MP, but the difference is that, in StOMP sevatains are added to the
vector at a time. StOMP [9] compares the valugb®flot product of y with the columns of D and shene is repeated with
a residue vector. An advantage of this methodasitittan produce a good approximation with a smathber of iterations
and the disadvantage is determining an appropviltes for the threshold. ROMP does not use a préhseshold value
instead it uses the vectors which have a similapdzduct with the required vector. The advantafge@MP is that vectors
are used which would a similar contribution to tequired vector. This process will be repeated fiating residue vector

at each iteration.
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Figure 4: Comparison of MP and OMP Algorithms for Reconstruction Error

Figure 4 gives the Comparison iteration betweenrélgn MP and OMP with fixed coarse sub-dictionand full

dictionary. Input signal is of dimension N= 128pir signal is N/2 vectors chosen from D(dictionamth normal weights.

Here fixed sub-dictionary cases, i.e. Coarse MP/ON#Re saturated pattern since the sub-dictiortiargn if working on

sub-dictionaries four times smaller, performingguits on the full dictionaries gives the betterconte. It can be observed

from the, Figure 4, that Potential gains are morté case of OMP algorithm with full dictionaryh& probabilistic parsing

of the full dictionary has better error decayinterthan when the fixed sub-dictionary (Coarse OlRised.

CONCLUSIONS

In this paper, feature dimension reduction techesgoased on PCA and Sparse techniques have beessdid.

PCA reduces the feature dimension for the tune lefeast 15 times as compared to SIFT. However PGA-#ethod is not

as robust as SIFT. Five different Sparse Approximnaflgorithms for Sparse Vector creation has béisnussed.
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